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ABSTRACT 
This paper analyzes the tree expansion for multiple-input multiple-output (MIMO) detection in 
the viewpoint of hardware implementation. The tree expansion is to calculate path metrics of child 
nodes performed in every visit to a node while traversing the detection tree. Accordingly, the tree-
expansion unit (TEU), which is responsible for such a task, has been an essential component in a 
MIMO detector. Despite the paramount importance, the analyses on the TEUs in the literature are 
not thorough enough. Accordingly, we further investigate the hardware complexity of the TEUs 
to suggest a guideline for selection. In this paper, we focus on a pair of major ways to implement 
the TEU: 1) a full parallel realization; 2) a transformation of the formulae followed by common 
subexpression elimination (CSE). For a logical comparison, the numbers of multipliers and adders 
are first enumerated. To evaluate them in a more practical manner, the TEUs are implemented in 
a 65-nm CMOS process, and their propagation delays, gate counts, and power consumptions were 
measured explicitly. Considering the target specification of a MIMO system and the implementa-
tion results comprehensively, one can choose which architecture to adopt in realizing a detector. 

KEY WORDS 
Multiple-input multiple-output (MIMO), sphere decoding, tree expansion, very large scale inte-
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1. INTRODUCTION 
Multiple-input multiple-output (MIMO) has been an 
indispensable technology in contemporary wireless 
communication systems as a means of enhancing the 
spectral efficiency and the diversity [1]. Along with 
the advancement of the technology, the number of an-
tennas and the order of modulation in a MIMO system 
have been increased significantly, necessitating effi-
cient hardware architectures for feasible implementa-
tion.  

To acquire the maximum-likelihood (ML) estimate 
of the transmitted signals, the MIMO detection proce-
dure is usually transformed to a tree-search problem, 
and is solved by the corresponding tree-search algo-
rithm based on the depth-first [2]–[4], the breadth-first 

[5]–[14], or the metric-first [15]–[17] strategy. Re-
gardless of the strategies, the tree expansion must be 
performed in every visit to a node while traversing the 
tree so that path metrics of child nodes can be evalu-
ated. Accordingly, the tree-expansion unit (TEU), 
which is responsible for such a task, has been an es-
sential component in a MIMO detector [18]. 

Despite the paramount importance, the mathemati-
cal formulae representing the tree expansion are rather 
simple. As a result, it received relatively little attention 
and had been implemented in a straightforward man-
ner [2]–[17]. In an attempt to mitigate the hardware 
complexity, the equations were approximated to the l1 
and l∞ norms [4], [5], [19], but they may cause severe 
deterioration of the error-rate performance. In [20], a 
mathematically equivalent transformation of the tree-
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expansion formulae was proposed to diminish the op-
erators by maximizing shareable subexpressions.  

Although [20] paved the way to the low-complexity 
implementation of the TEU without resorting to the 
performance-degrading approximations, the analyses 
in [20] are not thorough enough. Accordingly, we fur-
ther investigate the hardware complexity of TEU ar-
chitectures to suggest a guideline for selection. In this 
paper, we focus on a pair of major ways to implement 
the TEU: 1) a fully parallel (FP) realization; 2) a com-
bination of the formulae transformation and common 
subexpression elimination (CSE) [20]. For a logical 
comparison, the numbers of multipliers and adders are 
first enumerated. To evaluate them in a more practical 
manner, the TEUs are implemented in a 65-nm CMOS 
process, and their propagation delays, gate counts, and 
power consumptions were measured explicitly. Con-
sidering the target specification of a MIMO system 
and the implementation results comprehensively, one 
can choose which architecture to adopt. More specifi-
cally, when a high throughput is of the highest priority, 
we may parallelize the structure fully. If a low-power 
consumption is preferred, on the other hand, we may 
share subexpressions while sacrificing the throughput 
to a certain extent.  

The rest of this paper is organized as follows. The 
fundamentals of MIMO detection and tree expansion 
are reviewed in Section 2. Section 3 elucidates the two 
TEU architectures. In Section 4, the hardware com-
plexities of the TEUs are evaluated in a 65-nm CMOS 
process. Concluding remarks are made in Section 5. 

2. MIMO DETECTION AND TREE EXPANSION 
Figure 1 illustrates a MIMO system equipped with NT 
transmit antennas and NR receive antennas, which can 
be modeled as  
 
 ,= +r Ct a  (1) 
 
where r is the NR × 1 received symbol vector, C is the 
NR × NT Rayleigh fading channel matrix, t is the NT × 
1 transmitted symbol vector, and a is the NR × 1 addi-
tive white Gaussian noise vector. For the sake of sim-
plicity in processing, the complex-valued model in (1) 
is frequently transformed to the real-valued counter-
part by applying the real-value decomposition (RVD) 
[21]. Then, it is reformulated as 
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where Re(∙) and Im(∙) extract the real and the imagi-
nary components, respectively. The dimensions of y, 
H, x, and n are 2NR × 1, 2NR × 2NT, 2NT × 1, and 2NR × 
1, respectively. 

The objective of MIMO detection is to identify x 
from y and H as precisely as possible. The optimal es-
timate without a priori statistics, i.e., the ML solution, 
is denoted as xML. It can be obtained by solving 
 
 

2

2
ML arg min ,

NTO∈

= −
z

x y Hz  (3) 

 
where O is a set of alphabets in real-valued constella-
tion of a modulation scheme such as phase shift key-
ing and quadrature amplitude modulation (QAM). In 
case of 16-QAM, O ={–3, –1, +1, +3}. The QR de-
composition to H modifies (3) as 
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where Q is an orthogonal and unitary matrix, and R is 
an upper triangular matrix. ŷ is QH × y where QH is the 
Hermitian transpose of Q. The objective function in (4) 
is the l2-norm or the Euclidean distance, which can be 
recursively calculated as 
 
 ( )2
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where Pn is the partial Euclidean distance at the nth 
layer. In (5), 
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Figure 1. A complex-valued NT × NR MIMO communication system 
and a real-valued 2NT × 2NR system equivalent to each other. 
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Figure 2. Tree expansion for 16-QAM. 
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where ŷn is the nth component of ŷ, rij is the element 
of R at the ith row and the jth column, and zi is the ith 
component of z. Starting from the root node associated 
with P2N+1 = 0, (5) is recursively accumulated until it 
reaches the final cost P1 of a leaf node.  

In the description above, the tree expansion is to 
calculate (bn – rnnzn)2 for every zn ∈ O. Figure 2 exem-
plifies the expansion for 16-QAM. Each parent node 
spawns |O| = 4 child nodes, where |O| is the cardinal-
ity or the number of elements in O. For every zn ∈ O 
={–3, –1, +1, +3}, (bn – rnnzn)2 is evaluated to be added 
to Pn+1. 

3. TREE EXPANSION ARCHITECTURES 
We now delve into the two types of TEUs available in 
the literature mentioned in Section 1: 1) the FP TEU 
and 2) the CSE TEU [20]. The left-hand side (LHS) of 
Figure 3 enumerates all the formulae associated with 
the tree expansion for 256-QAM. Figure 4(a) imple-
ments the LHS of Figure 3 in a FP manner. The minus 
sign at an input of an adder indicates that the input is 
negated before taking summation. Besides, the multi-
ples of rnn, which depend only on H, are not calculated 
on-the-fly within the TEU, but are provided by the 
channel estimator as they change occasionally. If only 
rnn is given, its multiples can be synthesized by solving 
the multiple constant multiplication (MCM) problem 
based on the shift-and-add approach [22], [23]. In 
computing (bn – rnnzn)2 for one zn ∈ O, one adder and 
one multiplier are employed. Due to the full parallel-
ization, in total, |O| adders and |O| multipliers are re-
quired to build an entire TEU for |O|2-QAM. 

While Figure 4(a) is straightforward and works per-
fectly, it incorporates |O| multipliers, which are costly. 
To maximize shareable subexpressions, [20] manipu-
lates the equations as formulated in the RHS of Figure 
3, where (p << q) denotes left-shifting p by q bits. In 
other words, (p << q) = p × 2q. The RHS is mathemat-
ically equivalent to the LHS, and, therefore, does not 
degrade the error-rate performance at all [20]. Note 
that the RHS formulae have (bn + rnn)2 in common. By 
sharing it for all zn ∈ O, we can eliminate most of the 
multipliers in Figure 4(a). The hardware architecture 
realizing the RHS is depicted in Figure 4(b), where the 
minus sign and the number at an input of an adder rep-
resent the negation and the left-shift amount applied 
to the input before summation, respectively. It is worth 
noting that the shift operation by a constant amount 
does not incur any hardware overhead, as it can be eas-
ily realized by hard wiring. The multiples of rnn

2 are 
provided by the channel estimator, as those of rnn are 
so in Figure 4(a). A set of an adder and a multiplier 
colored red in Figure 4(b) solely take care of the terms 
colored the same in Figure 3. In a similar manner, bnrnn 
colored blue in Figures 3 and 4(b) are shared among 

the formulae to minimize the multipliers. The remain-
ing subexpressions colored green are shared as well to 
remove adders as much as possible. Unlike the multi-
ples of rnn

2, those of bnrnn cannot be precomputed by 
the external channel estimator due to bn. Therefore, 
they are synthesized and shared within the TEU. 

While Figure 4 sketches the TEUs for 256-QAM, 
the TEUs for 16- and 64-QAMs can be easily derived 
from the figure. A set of components placed above the 
upper horizontal dashed line corresponds to the TEU 
for 16-QAM. A set of those above the lower dashed 
line is capable of accommodating 64-QAM. As shown, 
both TEUs scale favorably with the increasing order 
of modulation. 

4. ANALYSES ON HARDWARE COMPLEXITY 
This section analyzes the hardware complexity of the 
TEUs for 16-, 64-, and 256-QAMs, which are the most 
prevalently employed modulations in practice. In Ta-
ble 1, the total numbers of operators in a TEU are sum-
marized. Let us assume that bn and rnn are quantized in 
W bits. Then, all the adders and multipliers in Figure 
4(a) are W-bit adders and W-bit multipliers, respec-
tively. Accordingly, the total number of W-bit adders 
and that of W-bit multipliers in a FP TEU are equal to 
|O|. There is no 2W-bit operator. On the other hand, 
the CSE TEU includes one W-bit adder and two W-bit 
multipliers. In addition, since the product of a W-bit 
multipliers is in 2W bits, the remaining adders are all 
2W-bit adders. Therefore, the CSE TEUs for 16-, 64-, 
and 256-QAMs have 4, 11, and 25 2W-bit adders, re-
spectively. Owing to the CSE, the CSE TEUs appar-
ently have fewer multipliers than the FP counterparts. 
In exchange for such a benefit, they must undertake 
several 2W-bit adders, which are more expensive than 
W-bit adders. 

Table 1 also enumerates the numbers of operators 
in the critical paths, which are colored red in Figure 4. 
The longest path in the FP TEU always consists of one 

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

(bn

rnn)2 = (bn + rnn)2

rnn)2 = (bn + rnn)2

3rnn)2 = (bn + rnn)2

3rnn)2 = (bn + rnn)2

5rnn)2 = (bn + rnn)2

5rnn)2 = (bn + rnn)2

7rnn)2 = (bn + rnn)2

7rnn)2 = (bn + rnn)2

9rnn)2 = (bn + rnn)2

9rnn)2 = (bn + rnn)2

11rnn)2 = (bn + rnn)2

11rnn)2 = (bn + rnn)2

13rnn)2 = (bn + rnn)2

13rnn)2 = (bn + rnn)2

15rnn)2 = (bn + rnn)2

15rnn)2 = (bn + rnn)2

(rnn
2 << 3)

(rnn
2 << 3)

(3rnn
2 << 3)

(3rnn
2 << 3)

(3rnn
2 << 4)

(3rnn
2 << 4)

(5rnn
2 << 4)

(5rnn
2 << 4)

(15rnn
2 << 3)

(15rnn
2 << 3)

(21rnn
2 << 3)

(21rnn
2 << 3)

(7rnn
2 << 5)

(7rnn
2 << 5)

–
+
–
+
–
+
–
+
–
+
–
+
–
+
–

+
–
+
–
+
–
+
–
+
–
+
–
+
–
+
–

+
+
+
+
+
+
+
+
+
+
+
+
+
+

(bnrnn << 2)
(bnrnn << 2)
(bnrnn << 3)
(bnrnn << 3)

(3bnrnn << 2)
(3bnrnn << 2)
(bnrnn << 4)
(bnrnn << 4)

(5bnrnn << 2)
(5bnrnn << 2)
(3bnrnn << 3)
(3bnrnn << 3)
(7bnrnn << 2)
(7bnrnn << 2)
(bnrnn << 5)  

Figure 3. Manipulation of the tree-expansion formulae for 256-QAM 
and common subexpressions therein. 
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adder and one multiplier regardless of the order of 
modulation. In contrast, a signal in the CSE TEU un-
dergoes one W-bit adder, one W-bit multiplier, and 
two 2W-bit adders at most, which is longer than in the 
FP TEU. In short, the CSE decreases the number of 
operators, but increases the number of stages to prop-
agate when applied to the TEU. 

While Table 1 is logically correct, actual latencies 
in the realized circuitry can be different due to many 
practical factors of implementation such as fan-in, fan-
out, and gate sizing. To evaluate more realistically by 
taking into account such factors, the TEUs were first 
described in Verilog hardware description language 
(HDL), and then were synthesized by Synopsys De-
sign Compiler in a 65-nm CMOS process. The corre-
sponding results are summarized in Table 2. Equiva-
lent gates were counted by regarding a two-input 

NAND as one. Power consumptions were measured by 
back-annotating switching activities. For the sake of 
comprehensive evaluation, the figure of merit is de-
fined to be the product of the equivalent-gate count 
and the critical-path delay. It is worth noting that the 
implementation results may vary with the methodolo-
gies employed. However, since the synthesizer opti-
mizes logics comprehensively, the variation is usually 
not significant at the end. The results in Table 2 are 
obtained from such quasi-optimal designs. 

Although the numbers of operators in the critical 
paths are identical for all constellations in Table 1, the 
actual path delays in Table 2 are indeed different to 
each other mainly due to the large fan-out of bn that 
feeds all the adders in parallel. The higher the order of 
constellation is, the higher the parallel factor is, the 
larger the fan-out is, and the longer the path delay is. 
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Figure 4. TEUs for 256-QAM. (a) FP implementation. (b) CSE implementation. 
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Besides, in accordance with Table 1, the CSE TEUs 
have longer critical-path delays than the FP TEUs. 
Specifically, the propagation in the critical path of the 
CSE TEU takes about 15% longer time than that of the 
FP TEU. Besides, the FP TEU for 16-QAM integrates 
slightly fewer equivalent gates than the CSE counter-
part. As the order of modulation increases, however, 
the CSE TEU relies on fewer gates, implying that the 
CSE is getting more effective. In particular, the CSE 
TEU for 256-QAM has 22% fewer gates. Putting them 
altogether, we can confirm that the CSE indeed elon-
gates the propagation delay but diminishes the hard-
ware resources. In terms of the power dissipation, the 
CSE TEU is always more efficient than the FP ones. 
Since the delay and the gate count are in a trade-off, 
the figure of merit can serve as a comprehensive meas-
ure for evaluating the TEUs. In 16- and 64-QAMs, the 
FP ones are better, whereas the opposite holds for 256-
QAM. The simple and straightforward structure of the 
FP TEU results in better measures than the CSE TEU 
for the low-order constellations. As the order of mod-
ulation increases, however, a significant number of 
multipliers are evicted by the CSE, and 256-QAM is 
the lowest-order constellation in which the effect of 
CSE becomes dominant enough to make the CSE TEU 
superior than the FP TEU. 

5. CONCLUSION 
The two types of the TEUs, i.e., the FP and the CSE 
architectures, have been analyzed in a 65-nm CMOS 
technology. For 16- and 64-QAMs, the FP TEU is su-
perior to the CSE counterpart in terms of the critical-
path delay multiplied by the equivalent gate count. On 
the contrary, in the modulation of the highest order 
considered, i.e., 256-QAM, the CSE TEU outperforms 
the FP TEU. Such results are originated from the CSE 

that becomes more effective for higher-order modula-
tions. Grounded on the analyses in Section 4, we may 
select a TEU architecture that suits the best to a certain 
specification. 
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